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Abstract

Large Language Models (LLMs) demonstrate remarkable
capabilities, yet struggle with hallucination and outdated
knowledge when tasked with complex knowledge reason-
ing, resulting in factually incorrect outputs. Previous stud-
ies have attempted to mitigate it by retrieving factual knowl-
edge from large-scale knowledge graphs (KGs) to assist
LLMs in logical reasoning and prediction of answers. How-
ever, this kind of approach often introduces noise and ir-
relevant data, especially in situations with extensive context
from multiple knowledge aspects. In this way, LLM atten-
tion can be potentially mislead from question and relevant
information. In our study, we introduce an Adaptive Multi-
Aspect Retrieval-augmented over KGs (AMAR) framework.
This method retrieves knowledge including entities, relations,
and subgraphs, and converts each piece of retrieved text into
prompt embeddings. The AMAR framework comprises two
key sub-components: 1) a self-alignment module that aligns
commonalities among entities, relations, and subgraphs to en-
hance retrieved text, thereby reducing noise interference; 2) a
relevance gating module that employs a soft gate to learn the
relevance score between question and multi-aspect retrieved
data, to determine which information should be used to en-
hance LLMs’ output, or even filtered altogether. Our method
has achieved state-of-the-art performance on two common
datasets, WebQSP and CWQ, showing a 1.9% improvement
in accuracy over its best competitor and a 6.6% improvement
in logical form generation over a method that directly uses re-
trieved text as context prompts. These results demonstrate the
effectiveness of AMAR in improving the reasoning of LLMs.

Code —
https://github.com/Applied-Machine-Learning-Lab/AMAR

Introduction
Recently, large language models (LLMs) like GPT-4 (Ope-
nAI 2024) and Llama (Touvron et al. 2023) have shown im-
pressive performance improvements across a variety of nat-
ural language processing (NLP) tasks (WANG et al. 2024;
WEN et al. 2023; XU et al. 2024; ZENG et al. 2023;
Wu et al. 2024; Liu et al. 2024a). However, when deal-
ing with specialized knowledge not in training corpus and
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Figure 1: An example illustrates the retrieval results catego-
rized as relevant, irrelevant, and partially relevant.

complex knowledge reasoning, LLMs still struggle with out-
dated knowledge and hallucination problems (Ji et al. 2023).
They thus may produce factually incorrect outputs, limit-
ing their usefulness in the areas requiring high reliability,
such as healthcare (He et al. 2023; Liu et al. 2024b) and
safety (Dong et al. 2024). To solve complex reasoning with
specialized knowledge, a line of research (Luo et al. 2023;
Sun et al. 2024) have explored Knowledge Graph Question
Answering (KGQA), a task that improves logical reason-
ing and prediction of answers by retrieving reliable infor-
mation from large-scale knowledge graphs (KGs) like Free-
base (Bollacker et al. 2008) and Wikidata (Vrandečić and
Krötzsch 2014). KGs store extensive factual knowledge in
a structured format known as triplets (Xu et al. 2024, 2022;
Wang et al. 2023b), consisting of (head entity, relation, tail
entity), which is seen as a potential solution for enhancing
the interpretability of LLMs reasoning (Sun et al. 2024).

The recent advancements in KGQA can be broadly clas-
sified into two main categories. The first category involves
using LLMs to transform input questions into structured log-
ical forms (Luo et al. 2023), such as S-expressions, which
can then be queried on KG using a graph database query
language like SPARQL to obtain the final answers. These
approaches leverage the structured nature of KG to extract
precise information in response to complex queries. The
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second category of KGQA involves directly predicting an-
swers using LLMs without extra logical forms. Some works
in this category perform multi-hop reasoning on KG in a
step-by-step manner by querying LLMs (Sun et al. 2024).
Other works retrieve additional contextual information re-
lated to the question and use it as contextual input to enhance
LLMs (He et al. 2024; LUO et al. 2024). These approaches
aim to improve the accuracy of answers by incorporating
more context into the reasoning process.

However, the retrieval process often yields a large amount
of information, as shown in Figure 1, which may be irrele-
vant or only partially relevant to the question and ground
truth. The retrieval recall curve demonstrates a positive cor-
relation between the number of retrieved data and the recall
score, indicating that the retrieved data contain valuable in-
formation. Therefore, it raises a question: How to identify
which retrieved knowledge is valuable and which is not?
This question becomes particularly crucial when a signifi-
cant portion of retrieved knowledge does not provide sub-
stantial assistance. In terms of this, we observed that previ-
ous studies (Yu et al. 2022; Hu et al. 2022) failed to con-
sidering commonalities among different aspects of retrieved
information, which can be beneficial in identifying crucial
knowledge. And they also neglected adaptive learning to es-
tablish relevance between question and retrieved text.

To address these overlooked challenges, we propose an
adaptive multi-aspect retrieval-augmented over KG (AMAR)
framework. Instead of directly appending the retrieved infor-
mation as context input, AMAR utilizes the retrieved infor-
mation more flexibly, therefore enhancing LLMs reasoning.
AMAR primarily includes two modules: 1) Self-alignment
module, where multi-aspect retrieval data (including enti-
ties, relations, and subgraphs, all of which are linearized
as text) is separately mapped into prompt embeddings from
text, facilitating fine-grained tuning. Next, cross-attention
and self-attention are applied to the multi-aspect embed-
dings to obtain consistency tokens. The aim is to align the
commonalities among different pieces of information. For
instance, if an entity and a subgraph both mention “Ocea-
nia”, this implies that they are probably consistent in con-
veying the same piece of information. In this way, we can
enhance crucial knowledge, thereby reducing noise inter-
ference. 2) Relevance gating module, which measures the
relevance between the embedding of question and consis-
tency tokens. This module introduces siamese networks with
shared weights to learn relevance score, which serves as
a soft gate to adaptively decide which retrieved informa-
tion is more useful for LLMs reasoning. Through the self-
alignment and relevance gating modules, AMAR adaptively
filters and selects multi-aspect retrieval knowledge, enabling
a more rational utilization of context and avoiding interfer-
ence from noise. We then fine-tune LLM in a parameter-
efficient manner to leverage the retrieved knowledge, assist-
ing in generating reasonable logical forms. Finally, we refine
the logical forms using the similarity of entities and relations
and query KG to obtain final answers. Overall, this work
makes three key contributions:
• To the best of our knowledge, this is the first study to

enhance LLMs reasoning for KGQA tasks by utilizing

multi-aspect KG information as prompt embeddings.

• We propose novel self-alignment and relevance gating
modules, which enable LLMs to adaptively filter and se-
lect multi-aspect retrieval knowledge, allowing for more
rational utilization of context while effectively avoiding
interference from noise.

• The effectiveness of AMAR was extensively validated
on two datasets across five metrics. AMAR demonstrated
superior performance, achieving state-of-the-art (SOTA)
results compared to 22 strong baselines.

Preliminaries
We first introduce key concepts and notations for our task.

Knowledge Graph (KG). A KG is a collection of factual
knowledge organized in form of triples: G = {(h, r, t)} ⊆
E×R×E , where E represents the entity set and R represents
relation set. Each triple consists of three elements: a head
entity h, a relation r, and a tail entity or a literal t.

Logical Form. The logical form is a structured language
representation of a question. In this work, we adopt S-
expression F as our chosen logical expression, following
(Luo et al. 2023; Yu et al. 2022). As shown in the exam-
ples provided in Figure 1, the S-expression utilizes functions
(such as JOIN, AND) that operate on set-based semantics,
which keep a balance between readability and compactness
and thus is well-suited for KGQA (Gu et al. 2021).

KGQA with LLM. KGQA is a classical NLP task that
has been further enhanced through the utilization of LLMs.
Given a question q, this task aims to retrieve knowledge re-
lated to q from a KG G and generate an S-expression F .
Since many KG storage engines support SPARQL, the gen-
erated S-expression F is converted into a SPARQL query,
which is further executed against G to obtain the final an-
swers. In our work, We retrieve multi-aspect knowledge (in-
cluding entities ke, relations kr, and subgraphs ks) and de-
sign a model f that utilizes LLMs to generate F based
on question and retrieval knowledge as input, i.e., F =
f(q, ke, kr, ks). By converting and executing the SPARQL
query on the KG, we can obtain final answers denoted as
a = query(convert(F)) ∈ Aq , where Aq ⊆ E .

Methodology
In this section, as shown in Figure 2, we begin with multi-
aspect knowledge retrieval. We then delve into two specific
modules, providing detailed explanations of their function-
alities, and demonstrate the process of querying KG using
logical form.

Retrieval of Multi-Aspect Knowledge
Previous KGQA methods either focus on retrieving entities
and relations (Hu et al. 2022) or retrieving multiple triplets
to form subgraphs (Yu et al. 2022; He et al. 2024). In our
research, we propose to leverage three types of knowledge
simultaneously. Each possesses varying aspects of informa-
tion, which complement each other and also share common-
alities. This enables us to effectively align crucial knowledge
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Figure 2: Overall framework of AMAR . We retrieve multi-aspect knowledge from KG and obtain weighted consistency prompt
embeddings using Self-Alignment and Relevance Gating modules. These embeddings are combined with the question and fed
into LLMs. The generated logical expression is refined and used to query KG, ultimately getting final answers. The unlabeled
color blocks in the middle represent the tokens input to the LLM, with pink blocks denoting question tokens and blue blocks
denoting retrieved knowledge tokens.

across three types. Due to the differences in their representa-
tions (e.g., length and format), we employ different retrieval
methods for each type.

Entity Retrieval. One effective approach for retrieving
candidate entities ke is to conduct entity linking with ques-
tion q. Following Hu et al. (2022), we employ the ELQ (Li
et al. 2020) for question entity linking, which utilizes a bi-
encoder to simultaneously detect mentions and link them to
entities end-to-end. Then FACC1 (Gabrilovich, Ringgaard,
and Subramanya 2013) (a comprehensive Freebase annota-
tion of corpora) is employed to identify entities that were not
linked by ELQ, to enhance the range of candidate entities.

Relation Retrieval. In large-scale KG (e.g. Freebase), re-
lations are typically organized hierarchically, such as the
example base.biblioness.bibs location.loc type. Therefore,
directly using question-based dense retrieval for similarity
may not be effective. To address this, following Hu et al.
(2022), we propose masking entity mentions detected during
the candidate entity retrieval stage with a [BLANK] token
for each question q. Building on the work of Hu et al. (2022);
Das et al. (2021), we train two separate BERT models that
encode questions and relations into a shared dense space.
The objective of optimization is to maximize the score of the
relevant relation compared to randomly sampled relations.
To retrieve the nearest relations, we employ FAISS (Douze
et al. 2024), a highly efficient vector database, which allows
us to speed up the search process and obtain the most rele-
vant results.

Subgraph Retrieval. One crucial consideration is the
wealth of structural and semantic information contained
within KG. Since KG data is typically stored as triplets,
we linearize triplets by combining head entity, relation, and
tail entity for retrieval. Following (Yu et al. 2022), we pro-
pose grouping linearized sentences with the same head en-
tity into a document. To save computing resources, we only
focus on 1-hop subgraphs to capture structural informa-

tion. Furthermore, concerning the potential information loss
when converting long documents into vectors, we employ
sparse retrieval approaches that rely on keyword dependen-
cies. Specifically, we employ techniques like BM25, which
calculates TF-IDF scores based on sparse word matches be-
tween input questions and KB-linearized passages. For more
information, refer to the appendix.

Self-Alignment
Although multi-aspect retrieval offers comprehensive auxil-
iary information, it can also introduce irrelevant knowledge
and noise, resulting in negative impacts. To address this con-
cern, we propose to align the commonalities among multi-
aspect information to improve informativeness.

We first utilize LLM’s embedding layer to convert
the multi-aspect retrieval knowledge into text embeddings
Xe ∈ Rtk×l×e, where the tk represent top k retrieval texts,
l denotes the maximum length of text, and e indicate the em-
bedding dim of the token. We then apply an averaging oper-
ation, followed by a projector network M, which transforms
these embeddings into prompt embeddings Xt ∈ Rtk×e

(i.e., one piece of retrieval text is projected to one token
embedding). For the sake of efficiency, M is designed to
consist of down-projection and up-projection layers, with a
nonlinear layer situated between them, as follows:

Xe = Embeddings(T ),

Xt = M(X̂e), X̂e =
1

l

∑l

i=1
Xe[:, i, :],

(1)

where T represents the retrieval text of entities, relations,
or subgraphs. Next, we apply self-attention separately to the
prompt embeddings of entities and relations to obtain entity-
consistency tokens ec and relation-consistency tokens rc:

ec = Self -Attn(Et) ∈ Rtk×e,

rc = Self -Attn(Rt) ∈ Rtk×e,
(2)



Here, we use St, Et, and Rt represent prompt embed-
dings Xt of subgraphs, entities, and relations, respectively.
This attention is applied to individual retrieval text (e.g., one
sentence) rather than individual tokens to learn the correla-
tion and consistency between different retrieval information
and their importance within the entire top k retrieval data.

In addition, we further focus on leveraging subgraphs in-
formation. To determine the significance of retrieval text,
we employ entities and relations as alignment factors. As
shown in Figure 2, by aligning triples in a subgraph that
is highly consistent to relation ‘location.location.contains’,
we can weight important data through commonalities of
multi-aspect knowledge. To obtain subgraph-consistency to-
kens sc, we perform cross-attention to entity-subgraph and
relation-subgraph pairs, respectively:

sec = Cross-Attn(St,Et,Et) ∈ Rtk×e,

src = Cross-Attn(St,Rt,Rt) ∈ Rtk×e,
(3)

and sum the results to get sc = sec + src ∈ Rtk×e. The
consistency tokens of entity ec, relation rc, and subgraph
sc contain refined knowledge aligned between multi-aspect
information, enhancing the utilization of the retrieved data.

Relevance Gating
After obtaining the consistency tokens, we expect the model
to learn the relevance between retrieval data and the ques-
tion. The relevance is used to construct a soft gating mech-
anism, which will adaptively select the relevant retrieval
information to be utilized. To achieve this, we design a
siamese network for each type of consistency token to mea-
sure its relevance to the question embedding Qe ∈ Rl×e.
Each siamese network consists of a shared MLP Mshare

networks that processes both question embedding and con-
sistency tokens, the generated qm ∈ Rl×e and xc ∈ Rtk×e

are then used to calculate similarity score Gsim ∈ Rtk×l

through a batch matrix multiplication. This score is subse-
quently averaged, and a sigmoid activation function is ap-
plied to produce the final relevance score g, as described
below:

qm = Mshare(Qe), xc = Mshare(Xc),

g = Sigmoid(
1

l

∑l

i=1
Gsim[:, i]), Gsim = xc · qT

m.

(4)
Here Xc can be denoted as entities, relations, or sub-

graphs consistency tokens. The relevance score of entity ge,
relations gr and subgraph gs serve as soft gates, are used to
model the influence of each consistency tokens by element-
wise product, respectively:

ewc = ge ◦ ec, rwc = gr ◦ rc, swc = gs ◦ sc. (5)

To enhance generalization ability, we introduce randomly
initialized soft tokens p ∈ Rl×e, which are concatenated
with the weighted consistency tokens and the question em-
bedding. These combined embeddings are then fed into
LLMs to generate logical form F as follows:

F = fθ,ϕ1,ϕ2
([p; ewc ; r

w
c ; s

w
c ;Qe]), (6)

where [;] represents concatenation operation, the parame-
ters θ of LLMs itself are frozen. The parameters that require
back-propagation optimization include our model parame-
ters ϕ1 and LoRA parameters ϕ2.

Query Execution
Due to the long-tail distribution of fine-tuned data and the
lack of specific knowledge, LLM may not strictly adhere to
the contextual information provided (Luo et al. 2023). As a
result, the generated logical forms may contain non-existent
entities or relations. For instance, when asked ‘where was
rihanna born and raised?’, an LLM might generate the log-
ical form ‘(JOIN (R people.person.place of birth) Rihana)’
instead of the correct spelling ‘Rihanna’. This discrepancy
renders the logical form non-executable on KG, and the
same issue can also arise with relations.

To further refine the quality of entity and relation, we em-
ploy a similarity-based approach with KG. Specifically, we
utilize an unsupervised SimCSE model to measure the sim-
ilarity between each entity in the generated logical form F
and the labels of entities in the entity set E . By setting a
threshold, we retain the most relevant entities Esub. Addi-
tionally, we query the KG to identify relations R2−hop that
are within 2 hops of the obtained subset of entities Esub.
Similarly, we calculate the similarity between all relations
in F and the identified set of relations. This refinement pro-
cess allows us to generate a new list of candidate logical
forms Fnew that better align with the KG. After converting
to SPARQL language, it can be used to query answers from
KG: a = query(convert(Fnew)).

Experiments
Experiment Settings
Datasets. Our experiments were conducted using two well-
known datasets: WebQuestionsSP (WebQSP) (Yih et al.
2016) and ComplexWebQuestions (CWQ) (Talmor and Be-
rant 2018). The dataset statistics are presented in the Ap-
pendix. Both datasets contain SPARQL queries that corre-
spond to the questions and can be executed on Freebase to
obtain answers.
Baselines. In this study, we evaluate performance with
22 baselines, which are categorized into four groups:
embedding-based (EM-based), information retrieval-based
(IR-based), semantic parsing-based (SP-based), and LLM-
based methods. For more detailed descriptions of the base-
lines, please refer to the Appendix. It is important to note
that some methods, such as DecAF (Yu et al. 2022), can be
classified as multiple groups, specifically IR-based and SP-
based. To ensure fairness, we do not include the results of
using the oracle entity linking annotations setting, such as
RoG (LUO et al. 2024). We put the performance compari-
son of the oracle setting in the Appendix.
Evaluation Metrics. We use Hits@1, F1, and Acc as pri-
mary evaluation metrics following (Luo et al. 2023). Hits@1
assesses the accuracy of top-1 predicted answer, F1 consid-
ers the coverage of all possible answers, and Acc measures
the strict exact-match accuracy. We further assess the quality
of generated S-expressions by employing two metrics: the



Type Model
WebQSP CWQ

F1 Hits@1 Acc F1 Hits@1 Acc

EM-based

KV-Mem (Miller et al. 2016) 34.5 46.7 - 15.7 18.4 -
NSM+h (He et al. 2021) 67.4 74.3 - 44.0 48.8 -
TransferNet (Shi et al. 2021) - 71.4 - - 48.6 -
KGT5 (Saxena et al. 2022) - 56.1 - - 36.5 -

IR-based

GraftNet (Sun et al. 2018) 60.4 66.4 - 32.7 36.8 -
PullNet (Sun et al. 2019) - 68.1 - - 45.9 -
SR+NSM (Zhang et al. 2022) 64.1 68.9 - 47.1 50.2 -
SR+NSM+E2E (Zhang et al. 2022) 64.1 69.5 - 46.3 49.3 -
UniKGQA (Jiang et al. 2023b) 71.0 77.0 - 49.4 50.9 -

SP-based

CBR-KBQA (Das et al. 2021) 72.8 - 69.9 70.0 - 67.1
GMT-KBQA (Hu et al. 2022) 76.6 - 73.1 77.0 - 72.2
UnifiedSKG (Xie, Wu, and et. al 2022) 73.9 - - 68.8 - -
RnG-KBQA (Ye et al. 2022) 75.6 - - - - -
DecAF (Yu et al. 2022) 78.8 82.1 - - 70.4 -
FC-KBQA (Zhang et al. 2023) 76.9 - - 56.4 - -

LLM-based

KD-CoT (Wang et al. 2023a) 52.5 68.6 - - 55.7 -
Pangu (Gu, Deng, and Su 2023) 79.6 - - - - -
StructGPT (Jiang et al. 2023a) - 72.6 - - - -
ChatKBQA (Luo et al. 2023) 79.8 83.2 73.8 77.8 82.7 73.3
ToG-R (GPT-4) (Sun et al. 2024) - 82.6 - - 69.5 -
G-Retriever (He et al. 2024) - 70.1 - - - -
GNN-RAG (Mavromatis et al. 2024) 73.5 82.8 - 60.4 62.8 -
AMAR (Ours) 81.2±0.15 84.3±0.16 75.2±0.10 78.5±0.11 83.1±0.09 74.5±0.07

Table 1: Performance comparison of different types of KGQA methods on WebQSP and CWQ datasets. We present the Mean
scores and standard deviations (mean ± std) of five experiments with different random seeds. The best result is highlighted in
bold, and the baseline results are taken from corresponding papers.

extract match ratio (EM) and the match after beam search
ratio (BM) with ground-truth S-expressions, for analytical
experiments.
Implementation Details. Following Luo et al. (2023), we
fine-tune LLaMA2-7B on WebQSP and LLaMA2-13B on
CWQ using LoRA. We evaluate the impact of backbones
and fine-tuning methods in our subsequent experiments.
During inference, we utilize beam search to generate mul-
tiple logical forms. We select the executable logical form
with the highest score to obtain answers. All experiments
were done on NVIDIA A6000 GPUs. We only searched the
number of retrievals k with values of {4,8,16,32,64,100}.

Main Results
As observed from Table 1, AMAR outperforms all base-
lines across all metrics on both datasets. Notably, on We-
bQSP dataset, accuracy has improved by 1.6% compared to
the second-best baseline, ChatKBQA, marking new state-
of-the-art performance. Specifically, AMAR surpasses sub-
graph retrieval techniques such as SR+NSM and DecAF
with 26% and 2.4% F1 improvements on WebQSP, respec-
tively, as well as entity and relation retrieval methods like
GMT-KBQA with 5.3% F1 improvement on WebQSP. This
can be attributed to our proposed self-alignment mecha-
nism, which effectively aligns multi-aspect knowledge. On
the other hand, AMAR also outperforms other LLM-based
approaches, such as G-Retriever and ChatKBQA, suggest-

Model
WebQSP

F1 Hits@1 Acc EM BM

AMAR 81.2 84.3 75.2 63.9 76.4
w/o SN 80.1 83.3 74.3 63.6 77.0
w/o SA 79.5 82.6 73.8 63.0 75.7
w/o RG 79.4 82.2 74.3 63.4 76.7
w/o SA&RG 78.7 81.0 72.5 62.1 73.6
w/o SA&SN 79.1 82.0 73.8 63.1 76.2
w/o ALL 76.2 79.5 70.1 59.7 72.4

Table 2: Ablation study of sub-modules on WebQSP dataset.

ing that our approach of learning prompt embeddings for re-
trieval can more flexibly leverage the capabilities of LLMs
to utilize retrieval knowledge.

Ablation Study
In this section, we conduct a series of ablation studies to
address the following question:

How do the proposed modules improve performance?
Specifically, we conduct experiments against five variants:
1) w/o SN: without siamese network, and relevance score
is calculated by vector inner product; 2) w/o SA: without
self-alignment module; 3) w/o RG: without relevance gat-
ing module; 4) w/o SA&RG: without both self-alignment
and relevance gating modules, where AMAR obtains prompt



Model
WebQSP

F1 Hits@1 Acc EM BM

AMAR 81.2 84.3 75.2 63.9 76.4
w/o Relation 78.6 81.7 73.1 63.0 74.9
w/o Entity 79.2 82.2 73.5 63.8 74.4
w/o Subgraph 79.7 82.9 73.8 63.5 75.1

Table 3: Quantitative comparison of the impacts of retrieval
information on AMAR ’s performance.

embeddings with only MLP. 5) w/o ALL: directly append-
ing the retrieval knowledge as context instead of convert-
ing retrieval knowledge to prompt embeddings. As shown in
Table 2, we observe that the performance on most metrics
decreases when either SN, SA, or RG is removed. This val-
idates the effectiveness of the proposed sub-modules. Fur-
thermore, we find that performance significantly drops when
the entire framework is removed, indicating that append-
ing retrieved knowledge directly as context text introduces
a large amount of noise, preventing LLMs from focusing on
learning the mapping from question to logical form. Addi-
tionally, we notice that the BM is higher in AMAR w/o SN
than in AMAR . This suggests that the ground-truth logical
forms are mostly ranked within the top 2 or lower positions
during beam search generation, leading to a lower EM.

What impacts do different aspects of retrieval infor-
mation have on performance? To preserve the integrity of
AMAR, we remove retrieval knowledge by replacing the text
embedding with randomly initialized ones. As shown in Ta-
ble 3, the results indicate obvious performance drops after
removing retrieval knowledge, including ‘subgraph’, ‘en-
tity’, and ‘relation’. This decline highlights the significance
of different aspects of the retrieval knowledge on the overall
performance. Further analysis reveals that removing the ‘re-
lation’ component results in the largest drop in performance,
suggesting that ‘relation’ plays a crucial role in generating
logical expressions. Instead, while the ‘subgraph’ still con-
tributes to performance, it appears to be less critical for log-
ical forms than ‘relation’ or ‘entity’. These findings provide
valuable insights for further optimization of the model.

Number of Retrieval Analysis
In this section, we explore the impact of the number of re-
trieval knowledge. We compare the approach of directly in-
putting retrieved data as a context prompt. If the input ex-
ceeds the maximum context limit (i.e., 4096 for LLaMA2),
we truncate the retrieved information from subgraphs. As
shown in figure 3, it can be observed that when the amount
of retrieved data is relatively small, our method does not sig-
nificantly differ from Context Prompt, which suggests that
useful information recalled is still limited. However, as the
quantity of retrieved data increases (e.g., reaching 64 or
100), our method achieves a substantial performance im-
provement, while context prompt drastically declines. This
demonstrates that introducing a long context results in sub-
stantial noise, making it difficult for LLMs to learn impor-
tant data. In contrast, by treating retrieved information as an
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ferent fine-tuning methods.

individual prompt embedding, we avoid the issue of exces-
sively long inputs and better utilize the rich information.

Efficiency of Fine-Tuning
In this section, we analyze the efficiency of our method com-
bined with different fine-tuning methods, including Prompt
Tuning (PT) (Lester et. al 2021) and Low-Rank Adaptation
(LoRA). To ensure fairness, we conduct fine-tuning exper-
iments without our module by concatenating the retrieved
knowledge text with the input context. As shown in Figure
4, we observe a significant improvement in performance af-
ter incorporating AMAR, Regardless of whether PT or LoRA
is used, our method consistently outperforms baselines. No-
tably, the combination of our method with PT+LoRA fine-
tuning yields the best results. This highlights the capabil-
ity of AMAR to effectively learn from retrieved information,
while the direct concatenation of context introduces consid-
erable noise. Furthermore, we find that LoRA fine-tuning
outperforms PT fine-tuning. This can be attributed to the in-
herent complexity of logical form generation in the KGQA
task. LoRA has more tunable parameters and can act on all
project layers, thus enabling LLMs to better adapt to tasks.

Case Study
In this section, we present a case study to illustrate how our
model adaptively learns the importance of retrieval knowl-
edge. We have not presented a case for subgraph retrieval
due to its extensive length. As shown in Table 4, our method
is proven effective in assigning high scores to correct entities
and relations for entity retrieval and relation retrieval, while
irrelevant or misleading information receives low scores.
For instance, the entity ‘Harper Lee’ received a score of
[0.9272], and relation ‘people.person.education’ received a
score of [0.9844]. Nevertheless, when retrieved text is di-
rectly used as the context prompt, it is susceptible to inter-
ference from erroneous information in retrieved data. This
can result in generating incorrect relations, such as ‘ed-
ucation.educational.institution.school type’. This example
highlights that our method not only enhances the perfor-
mance of LLM in KGQA but also improves the quality of
retrieved information by setting weight.



Question what highschool did harper lee go to?

Entity Retrieval ① Harper Lee [0.9272], ② Senior secondary education [0.5441], ③ Lee Remick [0.6482], ④ Secondary edu-
cation [0.5412], ⑤ Barbara Kingsolver [0.4320], ⑥ High school movement [0.6758]

Relation Retrieval ① people.person.education [0.9844], ② education.education.institution [0.9844], ③ educa-
tion.educational institution.school type [0.7281], ④ education.school.lowest grade taught [0.5469], ⑤
education.school mascot.school [0.5431], ⑥ common.topic.notable types [0.8252]

Logical Form by
AMAR

(AND (JOIN common.topic.notable types High school) (JOIN (R education.education.institution) (JOIN (R
people.person.education) Harper Lee))) "

Logical Form by
Context Prompt

(AND (JOIN education.educational.institution.school type School) (JOIN (R education.education.institution) (

JOIN (R people.person.education) Harper Lee))) %

Table 4: A case study on WebQSP, where the ‘[float]’ represents the scores assigned to each retrieval information, indicating
the level of influence it has on the model and the text with underline means erroneous generation.

Model
WebQSP CWQ

Acc Hits@1 Acc Hits@1
GPT-4

ToG-R - 82.6 - 69.5
LLaMA2-7B

G-Retriever - 70.1 - -
GNN-RAG - 82.8 - 62.8
ChatKBQA 73.8 83.2 73.0 82.3
AMAR 75.2 84.3 73.4 82.9

LLaMA2-13B
ChatKBQA 73.1 82.7 73.3 82.7
AMAR 74.7 83.3 74.5 83.1

Table 5: Analysis on different LLM backbones.

Analysis of LLM Backbones
In this section, we investigate the question: Does the per-
formance improvement of our method solely come from
LLMs? To answer this, we conduct experiments and com-
pare results using different LLMs as backbones: LLaMA2-
7B with fine-tuning, LLaMA2-13B with fine-tuning, and
GPT-4 (frozen). In Table 5, we observe that AMAR with
LLaMA2-7B and 13B as backbones outperform the base-
lines using the same backbone, such as ChatKBQA (Luo
et al. 2023), and both even surpass ToG-R (Sun et al. 2024)
using GPT-4 as the backbone on two datasets. These results
suggest that the performance gain of AMAR is not solely
attributed to the use of more capable LLMs but rather to
the proposed utilization of the commonality between multi-
aspect knowledge and the relevance of the question. We
found that LLaMA2-13B perform worse than LLaMA2-7B
on WebQSP. We believe the reason lies in dataset charac-
teristics: the scale of WebQSP (1) is much smaller than that
of CWQ, and (2) WebQSP has a maximum complexity, only
consisting of 2-hop questions. This may cause the LLaMA2-
13B to overfit, leading to reduced performance.

Related Work
Knowledge Graph Question Answering (KGQA). KGQA
aims to answer questions over KG, and previous methods

are usually categorized as EM-based, IR-based, SP-based
and LLM-based methods. EM-based methods encode the
entities and relations in the embedding space and reason
final answer using these structural embeddings (Shi et al.
2021). IR-based KBQA methods propose to retrieve and re-
rank answers from KGs given information conveyed in the
question (Chen et al. 2019; Zhang et al. 2022). SP-based
methods, focus on transforming question into a structural
query, such as SPARQL and S-expression, and reason final
answers using these executable queries (Liang et al. 2017;
Lan and Jiang 2020). Besides, recent attempts have been
made to utilize LLM-based methods for KGQA (Jiang et al.
2023c; Chen et al. 2024b). For instance, LUO et al. (2024)
presents a planning-retrieval-reasoning pipeline. ToG (Sun
et al. 2024) proposes to interactively explore paths and rea-
soning on KGs using LLM as an agent. Despite their signif-
icant improvements, a substantial challenge persists when
handling multi-aspect retrieved data as input, which may in-
troduce irrelevant knowledge. However, our method is capa-
ble of aligning knowledge and implementing adaptive rele-
vance gating with questions, thus addressing this issue.
Large Language Model Reasoning. Considering the im-
pressive abilities of LLMs, some previous works focus on
facilitating LLMs’ reasoning via prompting (He et al. 2021;
Das et al. 2021; Jiang et al. 2023a; Wang et al. 2023a; Li
et al. 2024; Bao et al. 2024; Chen et al. 2024a). To overcome
the unfaithful reasoning of LLMs, Jiang et al. (2023a) pro-
poses StructGPT, an iterative reading-then-reasoning frame-
work, to improve reasoning of LLMs when handling struc-
tured data. KD-CoT is designed to formulate chain-of-
thought into a multi-round QA format and LLMs can re-
trieve external knowledge during interaction (Wang et al.
2023a). However, LLMs reasoning is challenging when
leveraging information present in lengthy texts (Wang et al.
2024). In contrast, our model facilitates efficient selection of
information by utilizing prompt embeddings, thereby miti-
gating the issue of excessive context.

Conclusion
In this work, we propose a novel approach to enhance
LLMs reasoning and factual output by retrieving multi-
aspect knowledge from KGs. By employing self-alignment



and relevance gating modules, AMAR adaptively enhances
and selects relevant information. It has proven more effec-
tive than simply appending retrieved text to input context, as
it minimizes noise interference. Through extensive experi-
ments, AMAR outperforms 22 baseline models and achieves
a new state-of-the-art performance.
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Vrandečić, D.; and Krötzsch, M. 2014. Wikidata: a free col-
laborative knowledgebase. Commun. ACM, 57(10): 78–85.
Wang, K.; Duan, F.; Wang, S.; Li, P.; Xian, Y.; Yin, C.; Rong,
W.; and Xiong, Z. 2023a. Knowledge-driven cot: Exploring
faithful reasoning in llms for knowledge-intensive question
answering. arXiv preprint arXiv:2308.13259.
WANG, L.; MA, C.; FENG, X.; ZHANG, Z.; YANG, H.;
ZHANG, J.; CHEN, Z.; TANG, J.; CHEN, X.; LIN, Y.;
ZHAO, W. X.; WEI, Z.; and WEN, J. 2024. A survey on
large language model based autonomous agents. Frontiers
of Computer Science, 18(6): 186345.
Wang, M.; Zeng, D.; Xu, Z.; Guo, R.; and Zhao, X. 2023b.
Federated Knowledge Graph Completion via Latent Embed-
ding Sharing and Tensor Factorization. In 2023 IEEE Inter-
national Conference on Data Mining (ICDM), 1361–1366.
IEEE.
Wang, X.; Salmani, M.; Omidi, P.; Ren, X.; Rezagholizadeh,
M.; and Eshaghi, A. 2024. Beyond the limits: A survey of
techniques to extend the context length in large language
models. arXiv preprint arXiv:2402.02244.
WEN, M.; LIN, R.; WANG, H.; YANG, Y.; WEN, Y.; MAI,
L.; WANG, J.; ZHANG, H.; and ZHANG, W. 2023. Large
sequence models for sequential decision-making: a survey.
Frontiers of Computer Science, 17(6): 176349.
Wu, L.; Zheng, Z.; Qiu, Z.; Wang, H.; Gu, H.; Shen, T.;
Qin, C.; Zhu, C.; Zhu, H.; Liu, Q.; et al. 2024. A survey
on large language models for recommendation. World Wide
Web, 27(5): 60.
Xie, T.; Wu, C. H.; and et. al. 2022. UnifiedSKG: Uni-
fying and Multi-Tasking Structured Knowledge Grounding
with Text-to-Text Language Models. In Proceedings of the
2022 Conference on Empirical Methods in Natural Lan-
guage Processing, 602–631. Abu Dhabi, United Arab Emi-
rates: Association for Computational Linguistics.
XU, D.; CHEN, W.; PENG, W.; ZHANG, C.; XU, T.;
ZHAO, X.; WU, X.; ZHENG, Y.; WANG, Y.; and CHEN,
E. 2024. Large language models for generative information
extraction: a survey. Frontiers of Computer Science, 18(6):
186357.
Xu, D.; Xu, T.; Wu, S.; Zhou, J.; and Chen, E.
2022. Relation-enhanced negative sampling for multimodal
knowledge graph completion. In Proceedings of the 30th
ACM international conference on multimedia, 3857–3866.
Xu, D.; Zhang, Z.; Lin, Z.; Wu, X.; Zhu, Z.; Xu, T.; Zhao, X.;
Zheng, Y.; and Chen, E. 2024. Multi-perspective Improve-
ment of Knowledge Graph Completion with Large Lan-
guage Models. In Proceedings of the 2024 Joint Interna-
tional Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024), 11956–
11968.

Ye, X.; Yavuz, S.; Hashimoto, K.; Zhou, Y.; and Xiong, C.
2022. RNG-KBQA: Generation Augmented Iterative Rank-
ing for Knowledge Base Question Answering. In Proceed-
ings of the 60th Annual Meeting of the Association for Com-
putational Linguistics, 6032–6043. Dublin, Ireland: Associ-
ation for Computational Linguistics.
Yih, W.-t.; Richardson, M.; Meek, C.; Chang, M.-W.; and
Suh, J. 2016. The value of semantic parse labeling for
knowledge base question answering. In Proceedings of the
54th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), 201–206.
Yu, D.; Zhang, S.; Ng, P.; Zhu, H.; Li, A. H.; Wang, J.; Hu,
Y.; Wang, W. Y.; Wang, Z.; and Xiang, B. 2022. DecAF:
Joint Decoding of Answers and Logical Forms for Question
Answering over Knowledge Bases. In The Eleventh Inter-
national Conference on Learning Representations.
ZENG, Y.; LI, Z.; CHEN, Z.; and MA, H. 2023. Aspect-
level sentiment analysis based on semantic heterogeneous
graph convolutional network. Frontiers of Computer Sci-
ence, 17(6): 176340.
Zhang, J.; Zhang, X.; Yu, J.; Tang, J.; Tang, J.; Li, C.; and
Chen, H. 2022. Subgraph Retrieval Enhanced Model for
Multi-hop Knowledge Base Question Answering. In Pro-
ceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 5773–
5784.
Zhang, L.; Zhang, J.; Wang, Y.; Cao, S.; Huang, X.; Li, C.;
Chen, H.; and Li, J. 2023. FC-KBQA: A Fine-to-Coarse
Composition Framework for Knowledge Base Question An-
swering. In The 61st Annual Meeting Of The Association
For Computational Linguistics.



Appendix
Comparison in Oracle Entities setting
In this section, we present the results of our experiments
conducted under the Oracle Entity Linking Annotations set-
ting. This setting assumes that the model has prior knowl-
edge of the correct entity mentioned in the question. The
outcomes of this experiment can be seen in Table 6. The
results of our experiment indicate that our method achieves
state-of-the-art (SOTA) improvements. Interestingly, our ap-
proach performs exceptionally well even when the Oracle
setting is not utilized. In fact, our method outperforms sev-
eral baseline models that rely on the Oracle setting. For ex-
ample, when evaluating the WebQSP F1 metric, RoG ob-
tains a score of 70.8. However, our method surpasses this
score significantly, achieving a score of 81.2. This remark-
able achievement demonstrates the effectiveness of our ap-
proach.

Logical Form
In this study, we have chosen the S-expression F as our
logical expression, which has been previously used in (Luo
et al. 2023; Yu et al. 2022). The S-expression, as exempli-
fied by ‘(AND (JOIN base.biblioness.bibs location.loc type
”Country”) (JOIN (R location.location.contains) Ocea-
nia))’, utilizes functions such as JOIN and AND to operate
on set-based semantics. This approach strikes a balance be-
tween readability and compactness, making it suitable for
Knowledge Graph Question Answering (KGQA) (Gu et al.
2021). The JOIN operation is used to query a triple (h, r, t)
on either h or t. For instance, (?, r, t) is denoted as (JOIN r
t), and (h, r, ?) is denoted as (JOIN (R r) h). E1 or E2 denote
a sublayer logical form. Various operators include:

• ‘AND’ (AND E1 E2): represents the intersection of E1
and E2.

• ‘COUNT’ (COUNT E1): denotes the count of E1.
• ‘ARGMAX’ (ARGMAX E1 r): represents the maximum

literal obtained after projecting E1 onto the r relation.
• ‘ARGMIN’ (ARGMIN E1 r): denotes the minimum literal

obtained after projecting E1 onto the r relation.
• ‘GT’ (GT E1 l): represents the portion of E1 that is

greater than l.
• ‘GE’ (GE E1 l): denotes the part of E1 that is greater than

or equal to l.
• ‘LT’ (LT E1 l): represents the part of E1 that is less than

l.
• ‘LE’ (LE E1 l): denotes the part of E1 that is less than or

equal to l.

Retrieval of Multi-Aspect Knowledge
Entity Retrieval. One effective approach for retrieving can-
didate entities ke is to conduct entity linking with question
q. Following Hu et al. (2022), we employ the ELQ (Li et al.
2020) for question entity linking. ELQ is an efficient and
precise entity linking system designed specifically for ques-
tions. The system aim to identify the boundaries of entity

mentions within a question and link them to their corre-
sponding Wikipedia entities. The system uses a bi-encoder
based on BERT (Devlin 2018) to achieve this. The en-
tity encoder calculates entity embeddings for all entities in
Wikipedia (Vrandečić and Krötzsch 2014) using their short
descriptions. Simultaneously, the question encoder gener-
ates token-level embeddings for the input question. These
embeddings are then used to detect mention boundaries and
disambiguate each entity mention. This is done by calcu-
lating an inner product between the mention embeddings
(which are an average of the mention tokens) and the en-
tity embeddings. Then FACC1 (Gabrilovich, Ringgaard, and
Subramanya 2013) (a comprehensive Freebase annotation of
corpora) is employed to identify entities that were not linked
by ELQ, to enhance the range of candidate entities. The en-
tity recall score on WebQSP and CWQ datasets are shown
in Table 7.

Relation Retrieval. As we have stated in main body,
in large-scale KG (e.g. Freebase), relations are typically
organized hierarchically. Therefore, directly using question-
based dense retrieval for similarity may not be effective. To
address this, we propose masking entity mentions detected
during the candidate entity retrieval stage with a [BLANK]
token for each question q. For example, ‘(AND (JOIN
base.biblioness.bibs location.loc type Country) (JOIN (R
location.location.contains) Oceania))’ is replaced by ‘(AND
(JOIN base.biblioness.bibs location.loc type [BLANK])
(JOIN (R location.location.contains) [BLANK]))’. Follow-
ing Hu et al. (2022); Das et al. (2021), we train two separate
BERT (Devlin 2018) models that encode questions q and
relations r into a shared dense space. And we calculate the
similarity score by dot-product:

vq = BERT (q),

vr = BERT (r),

s(q, r) = vq · vr.

(7)

To construct a training batch, we randomly select negative
relations that are not part of the logical form of a given ques-
tion. The objective of optimization is to maximize the score
of the relevant relation compared to the randomly sampled
relations. To retrieve the nearest relations, we employ FAISS
(Douze et al. 2024), a highly efficient vector database, which
allows us to speed up the search process and obtain the most
relevant results. Next, we proceed to train a ranker that as-
signs scores to question and relation pairs. To achieve this,
we utilize a cross-encoder, which is a single BERT model.
The input to cross-encoder is a combination of question and
candidate relation. By employing a linear layer, we project
the representation of combined input ([q; r]) to a binary
probability distribution. This allows us to calculate score be-
tween q and r. During training, we employ cross-entropy
loss to optimize this process. Finally, we retain the top-k
candidate relations based on their rankings. The relation re-
call score on WebQSP and CWQ datasets are shown in Table
8.

Subgraph Retrieval. To better utilize structural and
semantic information contained within KG, we linearize
triplets by combining the head entity, relation, and tail en-
tity with spaces for retrieval. Drawing inspiration from (Yu



Model WebQSP CWQ
F1 Hits@1 Acc F1 Hits@1 Acc

TIARA* (Shu et al. 2022) 78.9 75.2 - - - -
EmbedKGQA* - 66.6 - - 45.9 -
ProgramTransfer* (Cao et al. 2022) 76.5 74.6 - 58.7 58.1 -
ChatKBQA* (Luo et al. 2023) 83.5 86.4 77.8 81.3 86.0 76.8
RoG* (LUO et al. 2024) 70.8 85.7 - 56.2 62.6 -
FiDeLiS-GPT4* (Sui et al. 2024) 78.32 84.39 - 64.32 71.47 -
AMAR (Ours) 81.2±0.15 84.3±0.16 75.2±0.10 78.5±0.11 83.1±0.09 74.5±0.07

AMAR * (Ours) 84.1±0.13 87.0±0.11 78.4±0.09 82.0±0.10 86.4±0.11 78.2±0.09

Table 6: Performance comparison of KGQA methods in oracle entity linking annotations setting. * means methods with oracle
entity.

Retrieved Entities WebQSP CWQ

Top 1 67.7 48.4
Top 2 76.1 72.0
Top 3 77.8 76.9
Top 4 78.8 78.2
Top 5 79.4 78.9
Top 6 80.0 79.3
Top 7 80.1 79.6
Top 8 80.3 79.9
Top 9 80.3 80.0
Top 10 80.6 80.2

Table 7: Recall score (%) on WebQSP and CWQ datasets.
This metric measures the recall of groundtruth entities in the
retrieved entities information.

et al. 2022), we propose grouping linearized sentences with
the same head entity into a document. To save comput-
ing resources, we only focus on 1-hop subgraphs to cap-
ture structural information. For example, the triple (Ocea-
nia, location.location.contains, Australia) can be linearized
to ‘Oceania location location contains Australia’. All lin-
earized texts from triplet connected to the same entity will
be concatenated together. Each document is truncated with a
maximum of 100 words. Furthermore, concerning the poten-
tial information loss when converting long documents into
vectors, we employ sparse retrieval approaches that rely on
keyword dependencies. Specifically, we employ techniques
like BM25 (Robertson, Zaragoza et al. 2009), The BM25
algorithm is widely employed for scoring search relevance.
In essence, it involves analyzing the query to generate mor-
phemes qi through morphological analysis. For each search
result D, the algorithm computes the relevance score be-
tween each morpheme qi and D. These relevance scores are
then weighted and combined to determine the overall rele-
vance score between the query and D. We follow BM25 to
calculates TF-IDF scores based on sparse word matches be-
tween input questions and KB-linearized passages, and ob-
tain the fine rerieved subgraphs. The subgraph recall score
on WebQSP and CWQ datasets are shown in Table 9.

Retrieved Relations WebQSP CWQ

Top 1 41.4 29.1
Top 2 63.1 54.1
Top 3 75.7 71.0
Top 4 82.3 80.2
Top 5 86.0 85.4
Top 6 88.1 87.9
Top 7 89.3 89.5
Top 8 90.3 90.6
Top 9 91.2 91.4
Top 10 92.0 92.0

Table 8: Recall score (%) on WebQSP and CWQ datasets.
This metric measures the recall of groundtruth relations in
the retrieved relations information.

Retrieved Subgraphs WebQSP CWQ

Top 5 30.7 27.9
Top 10 39.8 34.8
Top 20 48.5 41.0
Top 100 68.4 57.4

Table 9: Recall score (%) on WebQSP and CWQ datasets.
This metric measures the recall answers in the retrieved sub-
graph information.

Query Execution
After generating S-expressions using LLMs, we need
to refine them further. Let’s take the S-expression
(AND (JOIN base.biblioness.bibs location.loc type Coun-
try) (JOIN (R location.location.contains) Oceania)) as an
example. In this case, our refined targets consist of en-
tities such as Oceania and Country, as well as rela-
tions like base.biblioness.bibs location.loc type and loca-
tion.location.contains. It’s important to note that the logical
structure of the S-expression remains unchanged.

To refine the S-expressions, we follow the approach pro-
posed by Luo et al. (2023). Firstly, we extract the entire
set of entities from the KG. Then, we employ unsupervised
technique SimCSE (Gao, Yao, and Chen 2021) to calculate



Dataset #Question #Skeleton #Train #Valid #Test #Average Token Length
ke kr ks

WebQSP 4,737 34 3,098 - 1,639 11.4 4.2 145.9
CWQ 34,689 174 27,639 3,519 3,531 11.0 4.1 147.4

Table 10: Dataset statistics.

similarity scores between the extracted entities. By applying
a certain threshold, we obtain a subset of entities that have
a similarity score above the threshold. Regarding relations,
we extract all connected relation neighbors from the subset
of entities. Also, we utilize SimCSE to calculate similarity
scores, enabling us to identify the candidate relation with
the highest similarity score. All settings of executing query
follow Luo et al. (2023).

After refining the S-expression, we directly convert it into
a SPARQL expression. For example, the SPARQL expres-
sion for the above example is as follows:
1 "PREFIX ns: http://rdf.freebase.com/ns/
2 SELECT DISTINCT ?x
3 WHERE
4 {
5 FILTER (?x != ns:m.05nrg)
6 FILTER (!isLiteral(?x) OR lang(?x) = ’’

OR langMatches(lang(?x), ’en’))
7 ns:m.05nrg ns:location.location.contains

?x .
8 ?x ns:base.biblioness.bibs_location.

loc_type ?sk0 .
9 FILTER (str(?sk0) = "Country")

10 }"
We then use SPARQL expression to query KG, obtaining
final results. This process of refining and querying allows
us to ensure accuracy and relevance of information retrieved
from KG, thereby enhancing the effectiveness of our mod-
els.

Experiment Settings
Datasets In our work, we utilized two well-known and
commonly used datasets: the WebQuestions Semantic
Parses Dataset (WebQSP) (Yih et al. 2016) and ComplexWe-
bQuestions (CWQ) (Talmor and Berant 2018). The statis-
tics for these datasets are presented in table 10. ke, kr and
ks denote the average token length of entities, relations and
subgraphs in the retrieval knowledge. Both of these datasets
are based on Freebase (Bollacker et al. 2008) as the KG
database.

The WebQSP dataset contains full semantic parses in
SPARQL queries for 4,737 questions, and partial annota-
tions for the remaining 1,073 questions for which a valid
parse could not be formulated or where the question itself is
bad or needs a descriptive answer.

The CWQ dataset is a dataset designed for answering
complex questions that require reasoning over multiple web
snippets. It contains a large set of complex questions in nat-
ural language.

Baselines In this study, we compare the performance of
AMAR against 22 baselines, including 4 embedding-based

(EM-based) KGQA methods, 5 information retrieval-based
(IR-based) KGQA methods, 6 semantic parsing-based (SP-
based) KGQA methods, and 7 LLM-based KGQA methods.
In the comparative experiments in the Oracle entities setting,
we compare AMAR against another 6 baselines. The details
of each baseline are given as follows.

EM-based KGQA methods. KV-Mem (Miller et al.
2016) firstly stores the facts in a key-value structured mem-
ory, utilizes different encodings on the reading operation,
and reasons on these facts to obtain the answer. NSM+h (He
et al. 2021) proposes a teacher-student framework for multi-
hop KGQA, in which the student network aims to find the
answers using a neural state machine (NSM) and the teacher
network tries to learn intermediate supervision signals for
enhance the student work. TransferNet (Shi et al. 2021) be-
gins with the topic entity (within the question) and obtains
the answer by transferring entity scores along relation scores
of multiple steps. KGT5 (Saxena et al. 2022) unifies knowl-
edge graph completion and KGQA as the seq-to-seq tasks
and performs question answering after fine-tuning using QA
pairs.

IR-based KGQA methods. GraftNet (Sun et al. 2018)
adopts a graph convolutional network (GCN) to operate
on both the KG facts and text sentences and extract an-
swers from a question-specific subgraph. PullNet (Sun et
al. 2019) involves training a graph convolutional network
(GCN) to improve the retrieval process and multi-hop ques-
tion answering. SR+NSM (Zhang et al. 2022) proposes a
trainable subgraph retriever to improve the retrieval mod-
ule, and SR+NSM+E2E (Zhang et al. 2022) trains both the
retrieval and reasoning modules in an end-to-end manner
based on SR+NSM. UniKGQA (Jiang et al. 2023b) proposes
to unify the retrieval and reasoning in both model archi-
tecture and parameter learning for multi-hop KGQA. Em-
bedKGQA (Saxena, Tripathi, and Talukdar 2020) leverages
KG embeddings to perform missing link prediction, thus
reducing KG sparsity and improving multi-hop question-
answering.

SP-based KGQA methods. CBR-KBQA (Das et al.
2021) proposes a neuro-symbolic case-based reasoning
(CBR) approach and reuses existing cases to improve rea-
soning on unseen cases. GMT-KBQA (Hu et al. 2022) im-
proves logical form generation with multi-task learning and
better utilization of auxiliary information. UnifiedSKG (Xie,
Wu, and et. al 2022) unifies a total of 21 structured knowl-
edge grounding tasks into a text-to-text format and improves
the performance via multi-task prefix tuning on T5. RnG-
KBQA (Ye et al. 2022) enumerates all the candidate logical
forms from KG, ranks these candidates using the contrastive
ranker, and then obtains the target logical form with the tai-



lored generator. DecAF (Yu et al. 2022) proposes to jointly
generate both logical forms and direct answers and then
combine them to obtain the final answer. FC-KBQA (Zhang
et al. 2023) introduces a fine-to-coarse composition frame-
work to improve both the generalization and execution abil-
ities of the generated logical forms. TIARA (Shu et al.
2022) applies multi-grained retrieval to help language mod-
els concentrate on relevant KG contexts, including enti-
ties, schemas, and logical forms. ProgramTransfer (Cao
et al. 2022) proposes a two-stage parsing framework and an
ontology-guided pruning strategy to program transfer, lever-
aging program annotations as supervision signals to assist
program induction.

LLM-based KGQA methods. KD-CoT (Wang et al.
2023a) introduces formulating chain-of-thought (CoT) into
a multi-round QA format and during the interaction, LLMs
can retrieve external knowledge for faithful reasoning.
Pangu (Gu, Deng, and Su 2023) proposes to leverage
LLMs’ discriminative abilities rather than generative abil-
ities for performance improvement on complex KGQA.
StructGPT (Jiang et al. 2023a) is an iterative reading-then-
reasoning framework to improve LLMs’ reasoning when
handling structured data, such as KG. ChatKBQA (Luo
et al. 2023) follows the generate-then-retrieve KGQA frame-
work, which firstly probes LLMs to generate the logical
forms and refines the entities and relations within the log-
ical forms. ToG-R (Sun et al. 2024) proposes to explore
paths and reasoning interactively on KGs using LLM as
an agent. RoG (LUO et al. 2024) presents a planning-
retrieval-reasoning pipeline to generate relation paths, re-
trieve reasoning paths, and conduct faithful reasoning on
these paths. G-Retriever (He et al. 2024) introduces a
retrieval-augmented method for general textual graphs and it
integrates GNNs, LLMs, and RAG to improve the question-
answering abilities via soft prompting of LLMs. GNN-
RAG (Mavromatis et al. 2024) focuses on combining the
language understanding abilities of LLMs with the reason-
ing abilities of GNNs in an RAG style. FiDeLiS (Sui et al.
2024) presents a retrieval-exploration interactive method,
which addresses intermediate reasoning steps on KGs and
utilizes deductive reasoning capabilities of LLMs to guide
the reasoning process in a step-wise and generalizable man-
ner.

Implementation Details Our implementation is based on
NVIDIA A6000 GPUs, requiring approximately 48GB of
VRAM for training and testing. However, executing query-
ing on KG only requires 3GB of VRAM. Below, we provide
the selected hyperparameters for the WebQSP and CWQ
datasets. We only searched for the number of retrieved data.

For the WebQSP dataset: LoRA target weight: gate proj
down proj up proj Learning rate: 5e-5, LoRA rank: 8, LoRA
alpha: 32, LoRA dropout: 0.1, Training epochs: 80, Training
batch size: 4, Number of retrieved data: {4, 8, 16, 32, 64,
100}, Soft prompt length: 7, Beam search number: 8, Max
new tokens: 256.

For the CWQ dataset: LoRA target weight: gate proj
down proj up proj, Learning rate: 5e-5, LoRA rank: 8,
LoRA alpha: 32, LoRA dropout: 0.1, Training epochs: 10,

Training Time GPU Memory

Context Prompt 7.24 min/epoch 31 GB
Ours 4.87 min/epoch 18 GB

Table 11: Training time and space consumption.

Training batch size: 4, Number of retrieved data: {4, 8, 16,
32, 64, 100}, Soft prompt length: 16, Beam search number:
15, Max new tokens: 256.

For more code details, please refer to the source code in
the supplementary materials.

Experiments on training time and space consumption
These results shown in Table 11, obtained using an A6000
GPU with LLaMA2-7b on webQSP (batch size=4), demon-
strate that (1) time and space consumption are within accept-
able range; (2) our method significantly reduces both time
and space costs compared to directly using text as the con-
text.


